
ثانوية طارق التأهيلية

سلسلة أنشطة و تمارين حركة الدوران لجسم حول محور ثابت

السنة الدراسية : 2016/2015 المستــوى :16mé BSM

ذ.جواد الداودي

 $\frac{\mathrm{imld}}{\mathrm{imld}}$ حاملا ذاتيا على منضدة هوانية أفقية حيث ينجز هذا الأخير حركة دوران حول النقطة O التي يمر منها محور الدوران (Δ). نسجل حركة النقطة M و التي تتطابق مع مركز قصور الحامل الذاتي G خلال مدةزمنية متتالية و متساوية $\pm 30 \, \mathrm{ms}$ فنحصل على التسجيل التالى:

 $v = R.\omega$ التحقق من العلاقة:

1-1: أملاً الجدول التالى:

نختار لحظة تسجيل النقطة M₁ أصلا للتواريخ ،

و المحور Ox اتجاها مرجعيا.

2-1: أثبت العلاقة بين v و R شعاع الدائرة و الزاوية ω .

2- التوصل إلى المعادلة الزمنية للحركة.

 $\theta = f(t)$ مثل بسلم مناسب المنحنى الممثل للدالة 2-1

يتمثل معادلة الدالة heta=f(t) المعادلة الزمنية للنقطة heta=2

M. أوجد الصيغة الرياضية لهذه المعادلة.

s=g(t) مثل بسلم مناسب منحنی الدالة g=s

و استنتج المعادلة الزمنية في هذه الحالة.

M_6	M_5	M_4	M_3	M_2	M_1	M_0	الموضع
							t(s)
							θ(rad)
							$\Delta \mathbf{t} = \mathbf{t_{i+1}} - \mathbf{t_{i-1}}$
							$\Delta \theta_{i=}\theta_{i+1}$ - θ_{i-1}
							$\omega_i(rad/s)$
							s _i (m)
							$\Delta s_i = s_{i+1} - s_{i-1}$
							v _i (m/s)

تمرین تطبیقی:

نسجل خلال مدة زمنية متساوية و متتالية au=30m ، حركة نقطة M من جسم صلب (S) غير قابل للتشويه يوجد في حركة دوران حول محور ثابت (Δ) بحيث تبعد النقطة M عن (Δ) بمسافة $\Delta=8cm$. يعطي الجدول أسفله قيم الأفصول الزاوي $\Delta=8cm$ بدلالة الزمن.

M_7	M_6	M_5	M_4	M_3	M_2	M_1	M_0	الموضع
$5\pi/6$	$2\pi/3$	$\pi/2$	$\pi/3$	$\pi/6$	0	$-\pi/6$	$-\pi/3$	$\theta_i(rad)$
6 τ	5 τ	4 τ	3 τ	2 τ	τ	0		t (s)

1- بين أن حركة النقطة M منتظمة.

(S) النوية الزاوية لحركة النقطة (S) و استنتج السرعة الزاوية لدوران الجسم (S).

3- استنتج السرعة الخطية للنقطة M.

4- أحسب دور و تردد حركة M.

 M_4 و M_1 المتوافقتين لتسجيل كل من M_1 و M_1 و M_2 المتوافقتين لتسجيل كل من M_1 و M_2 .

وجد تعبير المعادلة الزمنية $\theta = f(t)$ للحركة.